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Motivations for 1/D

1. The large-N limit, of             where N is the group degrees of 
freedom. 

2. The analogue of N in quantum gravity is D, space-time 
dimensions where they are related such that,                              . 
In gravity D also comes from loop integrations. !

3. Mass dimensions of gravitational constant is,                           
Hence, 4 dimensions is not special. Gravity is perturbatively 
non-renormalisable for all D>2.!

4. Phenomenology, large extra-dim. theories, e.g. Kaluza-Klein 
models, ADD. 

5. Consistent previous work in literature. 
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1/D Expansion in perturbative QG

The basic idea is to make an expansion of any Green’s function as;  

           

D: number of dimensions              

  Feynman diagram sum in powers of 1/D. 

Result: The graphs that survive the large-D limit are the tree graphs and tree 
graphs with arbitrary number of bubbles such that no two bubbles touch 
each other. 
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In the large-D limit, a particular subset of planar diagrams will 
carry all leading 1/D contributions to the Green’s functions.  
!

Agrees with Strominger’s work, except more graphs contributes.  
!

Still: 
!
• Quantum gravity simplifies in a large number of     

dimensions in effective theory.
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1/D Expansion in Effective Field Theory
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1/D Expansion and Lattice Quantum Gravity

H.W. Hamber, R.M.Williams arXiv:hep-th/0512003  

!
• Examination of a 1/D expansion in Lattice QG based on Regge’s 

simplicial construction.  
!

• Scaling exponent      approaches 0 in the large-D.  
!

• It is concluded that “The action simplifies considerably in the large-D 
limit.”

⌫



1/D Expansion in Classical GR
R. Emparan et. al. arXiv:1302.6382  

• Interaction between the blackholes reduces with large-D, so the 
theory becomes non-interacting in the D goes to infinity limit.  

!
• Large-D limit simplifies the theory even in the classical limit of 

general relativity   
!
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Now, we will perform the 1/D expansion with 

exact renormalisation group techniques.



We start with the Einstein-Hilbert action and we find the scale 
dependent average effective action and the flow as, 
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And the scale dependent coupling constants are defined as:

Rk is the IR cutoff, “Tr” represents momentum integration. 
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β-functions have been calculated as; 

!

!

                                              

• We rescaled g as g/cD, where 

• We want an expansion around 1/D.  

• D dependence is coming from the trace multiplications. 

• Background Field Technique
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(M. Reuter, O. Lauscher arXiv:hep-th/0108040 )
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1/D Expansion and Asymptotic Safety
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By using the optimised cutoff function we get the coefficient 
functions in terms of λ,D and α-the gauge fixing constant- as;
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(D.Litim arXiv:hep-th/0312114)
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1/D Expansion Results:
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Fixed points are not universal. The eigenvalues of the stability 
matrix are universal, they define the behaviour of the RG flow in 
the vicinity of the fixed point. Stability matrix is defined as,                  
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In a vector dominance gauge i.e. when             , we find a more 
stable result,
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Conclusions
• We reached a successful 1/D expansion of quantum gravity. 

Fixed points of functional RG exist in a large number of 
dimensions with a consistent leading order behaviour (gauge 
independent).  

• Scaling exponent    , due to the gravitational constant always go 
like1/2D. This is consistent with the lattice result where      goes to 
0 in the large-D, it is also consistent with the previous asymptotic 
safety result from: D.Litim arXiv:hep-th/0312114. 

• We can’t recover D=4 from this expansion. Series diverge in low 
dimensions. Reason for that is scaling exponents bifurcate 
around D=25. The picture changes qualitatively. We should look 
more deeply into the approximations that we put in our theory. 
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Back-Up
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